CS-touch Sensors 2 -Class Discrimination of ±NG and OK

■Features

· These sensors contain two built-in touch sensors without using a logic circuit (sequencer) for discriminating between -NG, OK, +NG, and enable the signal to be output directly with a two-wire cable for extremely low cost.

· Adjustable OK range. Failsafe operation since the output is on.

Application

When discriminating dimensions or position, the three classes of -NG, OK, and +NG are classified into two classes of OK and NG by collectively treating -NG and +NG as NG.

unit: mm

■Mechanical specifications

Туре	CSCS	CSCSP
Bearing type	Metal bearing	
Mode	Signal-1 A: NO(normally open) Signal-2 B: NC(normally closed)	
Protective structure	I P65 (drip-proof)	I P67 (water-resistant)
Stroke	3	
Signal-1 pretravel	0.3	
Signal-2 setting range	Adjustable 2.7 (recommend 0.03 for minimum range)	
Repeatability	0.01	
Contact life	10 millon times	
Contact force	1N	
Working temperature range	$0\!\sim\!80^\circ\!\!\mathrm{C}$ (with the exception of freeze)	
Contact material	SUS HRc45~50	
Cable	3m Oil-resistant 2-core φ4	

*The signal interval is set to the default setting of 1mm when shipped.

Orders for heat-resistant (ambient temperature: 200 °C) and sensors provided with vacuum, non-magnetic and other special specifications are also accepted. Please consult your dealer.

Setting of Signal Operating Point

1) When Using at the default signal interval of

- (1) Install the sensor in the equipment (bracket) and install a single master corresponding to the Signal-1 point or Signal-2 point.
- 2 Slightly move the stem or bracket and fix in position at the location where the LED switches between OFF and ON

2) When changing the signal interval from the default setting

- External sensors replacement method —
- 1) Preset the dimension between the two signal points of the sensor with Signal-2 adjustment screw from outside using a block gauge, microhead or other instrument.
- (2) Slightly move the stem or bracket and fix in position at the location where the LED switches between
- ※ This can be performed easily by using an external changing tool or signal checker (refer to the diagram at right).

Pretravel(Signal-1) 0.3 Signal-2 setting range(adjustable) Stroke

3) Signal setting inside equipment

When signals can be set easily on the equipment using the signal adjustment screw and when the signal ratio is not compatible with 1:1 when mediated by a lever and so forth.

- 1) Attach the sensor to the bracket and install a master corresponding to Signal-1 point.
- 2 Slightly move the stem or bracket and fix in position at the location where the LED switches between OFF and ON.
- 3 Next, install a master corresponding to Signal-2 point, turn the adjustment screw on top and fix in position with the locking clamp nut at the location where the LED switches from ON to OFF.

Logic diagram

Circuit diagram

■Electrical specifications

External changing tool

% Supply microhead by customers

Signal Checker

- When using an external changing tool, the signal operating point can be confirmed locally (by using a battery, equipped with an LED display)
- The cable ends are connected with a clip
- This is also convenient for adjusting and testing when not using an external changing tool.

Example

Bolt tightness check

Facilitates checking of bolt tightness during automated assembly

Overlap check

Overlap check is performed during loading work during robot transport

Classification of 2 types of pass-fail dimensions

Three classes of +NG, OK and -NG can be classified into two classes of OK and NG without a sequencer.